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Multicanonical molecular dynamics �MD� is a powerful technique for sampling conformations on rugged
potential surfaces such as protein. However, it is notoriously difficult to estimate the multicanonical tempera-
ture effectively. Wang and Landau developed a convenient method for estimating the density of states based on
a multicanonical Monte Carlo method. In their method, the density of states is calculated autonomously during
a simulation. In this paper, we develop a set of techniques to effectively apply the Wang-Landau method to MD
simulations. In the multicanonical MD, the estimation of the derivative of the density of states is critical. In
order to estimate it accurately, we devise two original improvements. First, the correction for the density of
states is made smooth by using the Gaussian distribution obtained by a short canonical simulation. Second, an
approximation is applied to the derivative, which is based on the Gaussian distribution and the multiple
weighted histogram technique. A test of this method was performed with small polypeptides, Met-enkephalin
and Trp-cage, and it is demonstrated that Wang-Landau MD is consistent with replica exchange MD but can
sample much larger conformational space.
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I. INTRODUCTION

Computer simulation has been established as a technique
for studying the systems with many degrees of freedom such
as spin glasses and proteins. The difficulties in studying such
systems stem from the fact that the conformational space is
very large and there exist a huge number of local minimum
energy states. For studying interesting phenomena or calcu-
lating quantities such as the transition of states or the free
energy of the system, a global sampling of the conforma-
tional space and uniform sampling on energy space is de-
sired. Canonical simulations at high temperatures realize the
global sampling but low energy states are poorly sampled. At
low temperatures, simulations can sample low energy states
but the global search is difficult. In order to overcome these
difficulties, many generalized-ensemble algorithms have
been developed such as the multicanonical algorithm �1� and
the replica exchange method �REM� �2,3�.

The multicanonical method is based on artificial weight
factor by which a simulation realizes a flat energy histogram.
This weight factor is not known a priori and has to be de-
termined by iterating simulations and estimations. If the
value of the weight factor is partially too large or small, then
it causes to disturb a random walk in energy space. There-
fore, the multicanonical weight factor needs to be fairly ac-
curate. However, obtaining an accurate weight factor is often
difficult and requires a great deal of expertise. In REM, a
number of non-interacting replicas of the original system at
different temperatures are simulated independently and si-
multaneously. Every few steps the temperatures of pairs of

replicas are exchanged, subject to a detailed balance condi-
tion. As the system size increases, however, the required
number of replicas also greatly increases. In such a huge
simulation system, it takes an unrealistically long CPU time
for a replica to traverse the entire temperature range.

Wang and Landau �4� proposed a simulation method to
sample conformational space efficiently. In their method
�hereafter referred to as the WL method�, the weight factor is
automatically estimated while the multicanonical simulation
is performed. This method is originally based on a Monte
Carlo �MC� algorithm.

In this paper, we focus on efficient sampling over the
conformational space of an all-atom model of protein. Mo-
lecular dynamics �MD� and MC are the standard techniques
for all atom protein simulations. It is recognized that the
sampling efficiency of the MC method is comparable, or
sometimes superior to MD for liquid simulations. In protein
simulations, however, MD shows about 1.5 times better sam-
pling efficiency �5�. This difference is attributed to the inertia
force term in MD, which does not exist in MC.

Recently, MD with the WL method was applied to simu-
lations of solutions �6� in which the original WL algorithm
was applied to MD simulations in a straightforward manner.
As we mention in detail later, the simple application of the
WL method to MD does not work well for a protein system
for a number of reasons. First, in the multicanonical MD or
related methods such as the WL MD, not only the density of
states but its derivative are required. In the WL method, the
density of states is rugged, so that its derivative is of poor
accuracy. Second, as the WL method realizes quick random
walk in energy space then for a polymer such as a protein,
temperature changes occur in a time scale shorter than is
necessary for a change of the structure of the whole mol-
ecule. Eventually it takes a long time for a meaningful struc-
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tural change to occur. In this paper, we present techniques for
implementing an efficient WL MD method to circumvent
these problems.

This paper is organized as follows. We describe a detailed
formulation of the Wang-Landau molecular dynamics
�WLMD� method in Sec. II. In Sec. III, we introduce the
model system for the present study, the Met-enkephalin, a
5-residue peptide, and the Trp-cage, a 20-residue protein.
Next, we compare the sampling efficiency of the current
method with that of the replica exchange MD �REMD�
method in Sec. IV.

II. METHOD

A. The Wang-Landau method

Wang and Landau have developed a very powerful MC
simulation technique for efficiently sampling conformational
space. In their method, the transition probability from energy
E1 to E2 is given by

p�E1 → E2� = min�n�E1�
n�E2�

,1� , �1�

where n�E� is the density of states. This is the same as in the
standard multicanonical MC method. Since n�E� is not
known a priori, one has to determine it by some means. In
conventional multicanonical simulations, it is determined by
iterating short preliminary simulations using

ln n�i+1��E� = ln n�i��E� + ln H�i��E� ∀ E � E , �2�

where n�i��E� and H�i��E� are the density of states and the
histogram in the ith simulation, respectively, and E is a set of
allowed energy levels. What is unique of the WL method
resides in the scheme for updating n�E�. When an energy
level, Ei, is visited at the time step, i, the existing n�E� is
modified by a modification factor ��1, i. e.,

n�i+1��E� = ��n�i��E� , if E = Ei

n�i��E� , otherwise.
� �3�

For a given energy, E, if n�i��E� is smaller than the true den-
sity of state, n�E�, the energy state E is sampled intensively
so that n�i��E� is updated to approach the true value, n�E�. On
the contrary, if n�i��E��n�E�, the sampling of the energy
state, E, is suppressed and other energy states are extensively
sampled. Although n�E� is unknown at the very beginning of
simulation, n�i��E� approaches the true value quickly and au-
tomatically. Since n�i��E� is updated every step, it is possible
for the system to escape local minima in a very short period
of time.

B. The Wang-Landau molecular dynamics

We apply the WL method to MD simulations. The equa-
tion of motion for the multicanonical MD is given by �7,8�

mk
dv�k

dt
= −

�mu

�0

�E

�x�k

, �4�

�mu =
d ln n�E�

dE
, �5�

where mk, v�k, and x�k represent mass, velocity, and coordinate
of kth atom, and the inverse temperature, �0=1/kBT0 �kB is
the Boltzmann constant�, with the simulation temperature,
T0. �mu is referred to as the multicanonical temperature. In a
straightforward application of the WL method to MD, the
density of states, n�E�, could be estimated according to Eq.
�3�. However, such a simple method does not work well in
practice. It is necessary to accurately estimate not only n�E�
but also its derivative �mu. In numerical calculation, n�E� is
divided into bins, and each bin is given a discrete value. In
general, the estimate of �mu is of low accuracy due to the
ruggedness between neighboring bins. In order to smooth
this ruggedness, we approximate canonical energy distribu-
tion at various temperatures by the Gaussian distribution and
combine them with the weighted histogram method
�WHAM� �9� for updating n�i��E� and estimating the multi-
canonical temperature.

In the canonical ensemble at an inverse temperature, �,
the distribution of energy E is written as

P��E� = n�E�ef−�E, �6�

where n�E� is the density of states and

e−f = 	
E

n�E�e−�E. �7�

The last equation �Eq. �7�� defines the partition function. The
canonical distribution usually has a bell-like shape. At the
energy Epeak corresponding to the peak of the distribution,
the equation d ln P��E� /dE=0 is satisfied. This is rewritten
as


d ln n�E�
dE



E=Epeak

− � = 0. �8�

By comparing Eqs. �5� and �8�, one can see that the multi-
canonical temperature �mu at energy E is the temperature of
a canonical ensemble whose peak energy is E. If Epeak and
n�E� are known, it is possible to solve Eq. �8� for �. How-
ever, it is difficult to evaluate Epeak since d ln n�E� /dE is
inaccurate if n�E� is estimated from a simulation �which is
the case in practice�. On the other hand, it is relatively easy
to estimate the thermal average �E�� as

�E�� =

	
E

En�i��E�e−�E

	
E

n�i��E�e−�E
, �9�

where n�i��E� is the density of states estimated from the
simulation. The variance of the energy can be estimated in
the same manner,
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��
2 =

	
E

�E − �E���2n�i��E�e−�E

	
E

n�i��E�e−�E
. �10�

Hansmann �10� suggested using �E�� instead of Epeak. In his
prescription, �mu is determined from the table of �E��. The
canonical distribution of the systems that we are interested in
is similar to the Gaussian distribution. Using �E�� and the
deviation ��

2 at �, we assume that the following approxima-
tion holds:

P��E� =

exp�− �E − �E���2

2��
2 �

	
E�

exp�− �E� − �E���2

2��
2 � , �11�

which can be rearranged, using Eqs. �6� and �11�, to

n�E� =

exp�−
�E − �E���2

2��
2 + �E − f�

	
E�

exp�−
�E� − �E���2

2��
2 � . �12�

It is possible to calculate the right-hand side from a canoni-
cal simulation, but the accuracy decrease as �E− �E���2 in-
creases. In order to keep the accuracy for a wide energy
range, n�E� is estimated by using the WHAM technique with
a number of temperatures,

n�E� =

	
j

wjP�j
�E�

	
j

wje
f j−�jE

, �13�

where

e−f j = 	
E

n�E�e−�jE �14�

and wj’s are appropriate weight factors �see below�. n�E� and
f j can be obtained by solving Eqs. �13� and �14� iteratively.
From Eqs. �11� and �13�, it follows that

d ln n�E�
dE

=

	
j

wj�� jn�E�ef j−�jE − P�j
�E�

E − �E��j

��j

2 �
	

j

wjP�j
�E�

,

�15�

which can be further reduced, by using Eq. �6�, to

d ln n�E�
dE

=

	
j

wjP�j
�E��� j −

E − �E��j

��j

2 �
	

j

wjP�j
�E�

 ��E� .

�16�

Both n�E� and f j vanish in this expression. We use this equa-
tion for estimating the multicanonical temperatures. Note
that Eq. �11� is not exact. This implies that our method may
not be suitable for a system with doubly peaked distribution,
for example. Nevertheless, such an error should be small if
we use a sufficiently large number of temperatures.

In a WLMD simulation, we need to specify the lowest and
highest temperatures for the system ��min and �max, respec-
tively�, and prepare energy bins and temperatures corre-
sponding to each energy bin. The initial estimate of the den-
sity of states, n�1��E�, is obtained as follows. We first run a
short �say, 100 steps� canonical MD simulation at the inverse
temperature �max �corresponding to the highest temperature�,
and calculate the average and variance of the energy from
this short simulation. We then apply Eqs. �12� and �7� itera-
tively, which yields the initial estimate n�1��E�. The rest of a
WLMD proceeds as follows.

�1� Set i=1 and �mu
�i� =�max.

�2� A canonical MD is performed for a very short period
of time �say, 100 steps� according to Eq. �5� with fixed �mu

�i� .

During this period, the time average Ē�
mu
�i� and the variance

�
�

mu
�i�

2
of the energy are estimated. The Gaussian energy dis-

tribution based on these values is denoted P�mu

�i� �E�. Let the
energy value of the last step of this canonical simulation be

Elast
�i� . Let Emu

min,i=mink=1,. . .,iĒ�
mu
�k� and Emu

max,i=maxk=1,. . .,iĒ�
mu
�k� .

�3� The average and variance of energy at the inverse
temperature �max are estimated using all the energy values
that have been visited with �mu=�max up to this time step.
Using these values, the Gaussian distribution P�max

�i� �E� is ob-

tained. Similarly, the Gaussian distribution at �min, P�min

�i� �E�,
is estimated. P�min

�i� �E� is set to zero if the simulation has
never visited this temperature.

�4� For each energy bin, Ej, calculate the corresponding
temperature � j

�i�=��i��Ej� according to Eq. �16� with the
Gaussians P�

j
�i−1��E�, P�max

�i� �E�, P�min

�i� �E�, and P�mu

�i� �E�. The

weight wj is set to 1 except for P�mu

�i� �E� for which the weight
is set to a specified modification factor wmu�0 �this factor
corresponds to � in Eq. �3��. �Note that, for i=1, P�

j
�i−1��E� is

not yet defined and is set to zero.�
�5� Using the temperatures � j

�i� obtained in the previous
step, calculate, from Eqs. �9� and �10� as well as the current
estimate of the density of states n�i��E�, the average and
variance, �E��

j
�i� and �

�
j
�i�

2
, and the Gaussian distribution,

P�
j
�i��E�.
�6� Iterate steps 4 and 5 until all the � j

�i�’s converge.
�7� Update the density of states using Eqs. �13� and �14�

and the Gaussians to obtain the next estimate n�i+1��E�.
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�8� Estimate the next multicanonical temperature �mu
�i+1�

according to Eq. �16� at the energy of the last canonical MD
step, Elast

�i� . If Elast
�i� �Emu

min,i or Elast
�i� �Emu

max,i, �mu
�i+1� is evaluated

at Emu
min,i or Emu

max,i, respectively. This is necessary for a stable
simulation.

�9� Set i= i+1 and go back to step 2.
In order to avoid numerical overflow in the calculation of

n�i+1��E� in the step 7, we limit the summation in Eq. �13� to
those inverse temperatures � j

�i� satisfying

Emu
min,i � �E��j

�i� � Emu
max,i. �17�

Recently, Kim et al. �11� developed the method to determine
the multicanonical temperature automatically. The notable
points in their method are the short period update and adding
the derivative of histogram to the multicanonical tempera-
ture. While their method is different from our method in the
way to update the histogram, the idea of the short term up-
date is common. They use the finite difference of raw data
�energy histogram� for update. Since the present method uses
the Gaussian mask and the WHAM technique to estimate the
density of states and its derivative, it is expected to be more
robust.

C. Separation of bond and nonbond interaction

When we first applied the above method to a protein sys-
tem, a random walk in the energy space was readily realized.
However, the protein conformation changed very little in the
whole process. It was found that the energy change predomi-
nantly originated from the bond length and the bond angle
deviations. As a result, the bond energy almost solely con-
tributed to n�E�. To avoid this artifact, we separated the bond
interaction from the nonbond interaction, and applied the
multicanonical ensemble only to the nonbond interaction.
The energies of bond and nonbond interactions are written as
Eb and En, respectively, i.e.,

E = Eb + En. �18�

Using Eb and En, density of state is represented as n�Eb ,En�.
The equations of motion with the n�Eb ,En� is now expressed
as

mk
dvk

�

dt
= −

�b

�

�Eb

�x�k

−
�n

�

�En

�x�k

, �19�

with

�b =
� ln n�Eb,En�

�Eb
, �20�

�n =
� ln n�Eb,En�

�En
, �21�

Then it is possible to give different temperatures for bond
and nonbond interactions. In order to suppress the
motion due to the bond interaction and to facilitate global

conformational changes, �b is fixed whereas �n is varied
according to the WLMD scheme from a low to high tempera-
ture.

III. MODEL FOR NUMERICAL CALCULATION

We carried out simulations using a customized version of
the PRESTO molecular simulation package �12�, in which
the all-atom version of the AMBER force-field parameters
�C96� �13� was used.

A. Met-enkephalin

We used the Met-enkephalin �Protein Data Bank �PDB�
code: 1PLW; amino acid sequence: YGGFM� as a model
system for checking the correctness of the method. Eight
independent WLMD simulations were conducted for 10 ns
�80 ns in total�, starting from the extended conformation
with the temperature ranging between 200 and 700 K. No
solvent effect was included but a distance-dependent dielec-
tric constant was used ��=4r, where r is the inter-atomic
distance�. The density of states was updated every 1000 steps
�unit time step was 0.5 fs�. The objective of these simula-
tions is to check whether the present method can yield a
plausible density of states compared to the REMD simula-
tions. Therefore, the modification factor for the density of
states was initially set to w�mu

=12.8 which was decreased by
the factor of 0.8 every 1 ns. This procedure is analogous to
that proposed originally by Wang and Landau �4�.

For comparison, we carried out an extensive REMD
simulation with eight replicas, each running 100 ns. Tem-
peratures ranged between 200 and 700 K, and were distrib-
uted exponentially. Replica-exchanges were tried every 20
steps. The average exchange acceptance ratio was approxi-
mately 18.6%. For the calculation of principal components
and density of states, those conformations generated during
the first 1 ns of the simulation were discarded.

B. Trp-cage

The protein used for demonstrating the efficiency of the
method is a 20-residue protein, Trp-cage �PDB code: 1L2Y;
amino acid sequence: NLYIQ WLKDG GPSSG RPPPG�,
which was derived from the C-terminal fragments of a 39-
residue exendin-4 peptide �14�. Physicochemical studies
showed that Trp-cage folds spontaneously and cooperatively.
It contains a short 	-helix in residues 2-9, a 310-helix in
residues 11-14, and a C-terminal polyproline II helix to pack
against the central tryptophan �Trp-6�. Several simulation
studies on this Trp-cage have already been published
�15–18�.

An implicit solvent model �19� was used with the dielec-
tric constant was set equal to 4r, where r is distance between
point charges. Furthermore, we employed an empirical dihe-
dral angle potential which was developed in our laboratory
�20�. The simulations were started from an extended confor-
mation. The unit time step was set to 0.5 fs, and we ran MD
simulations for 10 ns. We set Tmin=1/kB�min=200 K, Tmax
=1/kB�max=700 K, Tb=300 K, the multicanonical tempera-
ture was updated every 400 steps �0.2 ps�. The number of
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energy bins was set to 256. We carried out 24 runs with
different random initial velocities. The modification factor
for the density of states is set such that w�mu

=12.8.
For comparison, an alternative simulation with REMD

was performed under the equivalent condition, that is, 24
replicas each running for 10 ns. Temperatures exponentially
varied from 200 to 700 K and swapping was carried out ev-
ery 400 steps. The average acceptance ratio was 33.1%.

The run time required for one WLMD simulation was
184–193 h �189 h on average� on an Intel Pentium III
�1 GHz� processor. For REMD, the run time per CPU was
207 h. WLMD seems slightly more efficient than REMD in
spite of the extra effort required for the WHAM iterations.
The lower computational efficiency of REMD is caused by
the synchronization process which is necessary for different
replicas to exchange.

IV. RESULTS AND DISCUSSION

In order to check the correctness of WLMD, we first com-
pare the results of WLMD and REMD for a small peptide
Met-enkephalin. Figure 1 shows that the conformational
spaces sampled by the two methods closely overlap, indicat-
ing that WLMD can sample the conformational space as
widely as REMD. However, it should be noted that 10 times
more points are plotted for REMD than WLMD: if we plot
the same number of points, the REMD result looks much
more sparse.

For a WLMD simulation to work at all, good estimate of
the density of states should be obtained as the simulation
proceeds. We compare the density of states obtained by eight
WLMD simulations with that obtained by a long REMD
simulation in Fig. 2. Again, we see that the results of the two
methods agree quite well. A close examination reveals that
WLMD slightly overestimates the density of low energy
��70 kcal/mol� states �Fig. 2, lower part� compared to
REMD. Nevertheless, such difference is of a small fraction
��3% � of the entire range of the density of states. Since
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FIG. 1. �Color� Conformations of Met-enkephalin sampled by
Wang-Landau molecular dynamics �WLMD, upper panel� and
replica-exchange molecular dynamics �REMD, lower panel� pro-
jected onto the first two principal component axes �PCA�. During
WLMD 160 000 conformations were saved and 10 000 lowest en-
ergy conformations were selected. In the same manner, 10 000 low-
est energy conformations were selected for REMD. These 20 000
conformations in total were used for determining the principal axes.
Upper panel: 10 000 lowest energy conformations obtained by
WLMD are projected. Lower panel: 100 000 lowest energy confor-
mations obtained by REMD are projected. Each pixel is colored
according to the cRMS from the PDB structure.

FIG. 2. �Color� Comparison of density of states of Met-
enkephalin obtained by WLMD �blue lines� and REMD �red line�.
Eight density of states were obtained from eight WLMD simula-
tions �blue lines�, one density of states was calculated from one
REMD simulation with eight replicas �red line�. The lower panel
shows the difference of each density of states of WLMD from that
of REMD.
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FIG. 3. �Color� Density of states of Trp-cage obtained from
three independent Wang-Landau molecular dynamics simulations.
Each line represents the density of states obtained from one WLMD
run.
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WLMD is simply a method to efficiently estimate the density
of states for multicanonical MD, we can always further refine
the density of states using an ordinary multicanonical MD
procedure.

We next turn to our main application of WLMD: sampling
of low-energy conformations of Trp-cage.

In order to check if the density of states is still accurately
estimated for this bigger protein, we plotted the density of
states obtained by three independent WLMD simulations
�Fig. 3�. Although we cannot know the exact density of
states, the consistency among these estimates of density of
states suggests that the present scheme is at least self-

consistent. In order to calculate thermodynamic quantities,
one should gradually decrease the value of wmu toward zero
and set wmu=0 for the production run, as suggested by Wang
and Landau �4�. In the present example with Trp-cage, our
purpose is efficient sampling of low energy conformations
but not calculating thermodynamic quantities so that wmu is
always kept greater than 0.

We next compare the �nonbond� energy trajectories of
WLMD and REMD simulations �Fig. 4�. We selected three
trajectories arbitrarily from 24 simulations or replicas. It is
immediately apparent that the WLMD trajectories �Fig. 4,
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FIG. 4. �Color� Time series of nonbond energy of Trp-cage.
Upper panel: Wang-Landau molecular dynamics; the trajectories for
the last 1 ns are enlarged for clarity. Lower panel: Replica exchange
molecular dynamics. Three arbitrarily selected trajectories out of 24
are shown.
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FIG. 5. �Color� Time series of temperatures of Trp-cage. Upper
panel: Three trajectories from Wang-Landau molecular dynamics
simulations; the trajectories for the last 1 ns are enlarged for clarity.
Lower panel: Trajectories of three replicas from replica exchange
molecular dynamics simulations. In both figures, each trajectory
corresponds to that of Fig. 4.

NAGASIMA et al. PHYSICAL REVIEW E 75, 066706 �2007�

066706-6



upper panel� traverse a wide range of energy very rapidly
compared to the REMD trajectories �Fig. 4, lower panel�. In
fact, one trajectory of REMD seems to be trapped in a local
minimum.

A similar trend is also observed for temperature trajecto-
ries �Fig. 5�. The multicanonical temperature changes very
rapidly but smoothly in WLMD �Fig. 5, upper panel� while
the temperature changes rather slowly in REMD �Fig. 5,
lower panel�. One reason for such a behavior in WLMD is
that the multicanonical temperature can vary continuously
between Tmin �200 K� and Tmax �700 K� as it is determined
by Eq. �16�. On the other hand, in REMD, there are only 24
allowed and fixed temperatures if we use 24 replicas so that
the acceptance ratio of temperature swapping can be arbi-
trarily small.

Although rapid traversal of a wide energy or temperature
range is necessary, it is not sufficient for efficient sampling
of conformational space. In fact, rapid energy change may be
associated with very localized motions such as bond stretch-
ing. In order to examine the sampling efficiency of WLMD,
we first checked the trajectories of the coordinate root mean
square deviation �cRMS� from the native structure of Trp-

cage �Fig. 6�. As expected, cRMS changes more slowly �Fig.
6� than might be suggested by the energy trajectories �Fig. 4�
in both WLMD and REMD. Nevertheless, WLMD is much
less prone to being trapped in local minima and conforma-
tions appear to keep moving compared to REMD. A similar
trend was observed for the trajectories of end-to-end distance
�not shown�.

In order to visualize the efficiency of conformational sam-
pling, we carried out principal component analysis �21�. Out
of 1 200 000 conformations saved during 24 WLMD simu-
lations, 50 000 lowest energy conformations were extracted,
to which 50 000 lowest energy conformations out of
1 200 000 saved during the REMD simulation �24 replicas�
were added. These 100 000 conformations were used to de-
fine the principal axes. Conformations sampled in WLMD
and REMD were then projected onto the principal space
�Fig. 7�. It is apparent from Fig. 7 that WLMD covers much
more space than REMD. To confirm this observation more
quantitatively, we divided the space spanned by the first three
principal axes �each from −25 to 25 Å� into small cells
�1.0
1.0
1.0 Å3�, and counted the number of occupied
cells. Out of 125 000 cells, 4 335 �including the cell contain-
ing the native structure� were occupied by WLMD while
only 1 174 by REMD and the native structure cell was not
occupied. Therefore, in terms of the cell occupancy, WLMD
is 3.7 times more efficient than REMD for sampling protein
conformations.
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FIG. 6. �Color� Trajectories of coordinate root mean square de-
viations �cRMS� from the native structure of Trp-cage. Upper panel:
WLMD; lower panel: REMD. Each trajectory corresponds to that of
Fig. 4.
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FIG. 7. �Color� Conformations of Trp-cage projected onto the
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per panel: WLMD; lower panel: REMD. Each pixel is colored ac-
cording to the cRMS deviation from the native structure of
Trp-cage.
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In summary, we formulated the Wang-Landau molecular
dynamics method. In so doing, we adopted the Gaussian
masking for updating the density of states, and developed a
technique to reliably estimate the multicanonical tempera-
ture. It was shown that the WLMD method indeed samples
conformational space of a protein more efficiently than the
replica exchange MD method. Apart from the inaccuracy in

the molecular force field, the present method will serve as a
useful tool for simulation studies of protein molecules.
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